LnRiLWhlYWRpbmcuaGFzLWJhY2tncm91bmR7cGFkZGluZzowfQ==
QWxsYW46cmVndWxhcg==
I3RiY3NzIC53cHYtcGFnaW5hdGlvbi1uYXYtbGlua3NbZGF0YS10b29sc2V0LXZpZXdzLXZpZXctcGFnaW5hdGlvbi1ibG9jaz0iNDNjZTExMzg3MzE4MDExMDNjZmQzNzQ4YTNkZDQ1ZmYiXSB7IHRleHQtYWxpZ246IGxlZnQ7anVzdGlmeS1jb250ZW50OiBmbGV4LXN0YXJ0OyB9IC50Yi1jb250YWluZXIgLnRiLWNvbnRhaW5lci1pbm5lcnt3aWR0aDoxMDAlO21hcmdpbjowIGF1dG99ICN0YmNzcyAud3AtYmxvY2stdG9vbHNldC1ibG9ja3MtY29udGFpbmVyLnRiLWNvbnRhaW5lcltkYXRhLXRvb2xzZXQtYmxvY2tzLWNvbnRhaW5lcj0iM2JhNWYzMTE1MjgwZDg4M2U4MDM1NmEzMTg4ODA4NTkiXSB7IGJhY2tncm91bmQ6IHJnYmEoIDI0MywgMjQzLCAyNDMsIDEgKTtwYWRkaW5nOiAyNXB4OyB9IC50Yi1ncmlkLC50Yi1ncmlkPi5ibG9jay1lZGl0b3ItaW5uZXItYmxvY2tzPi5ibG9jay1lZGl0b3ItYmxvY2stbGlzdF9fbGF5b3V0e2Rpc3BsYXk6Z3JpZDtncmlkLXJvdy1nYXA6MjVweDtncmlkLWNvbHVtbi1nYXA6MjVweH0udGItZ3JpZC1pdGVte2JhY2tncm91bmQ6I2QzOGEwMztwYWRkaW5nOjMwcHh9LnRiLWdyaWQtY29sdW1ue2ZsZXgtd3JhcDp3cmFwfS50Yi1ncmlkLWNvbHVtbj4qe3dpZHRoOjEwMCV9LnRiLWdyaWQtY29sdW1uLnRiLWdyaWQtYWxpZ24tdG9we3dpZHRoOjEwMCU7ZGlzcGxheTpmbGV4O2FsaWduLWNvbnRlbnQ6ZmxleC1zdGFydH0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi1jZW50ZXJ7d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpjZW50ZXJ9LnRiLWdyaWQtY29sdW1uLnRiLWdyaWQtYWxpZ24tYm90dG9te3dpZHRoOjEwMCU7ZGlzcGxheTpmbGV4O2FsaWduLWNvbnRlbnQ6ZmxleC1lbmR9ICN0YmNzcyAud3B2LXZpZXctb3V0cHV0W2RhdGEtdG9vbHNldC12aWV3cy12aWV3LWVkaXRvcj0iZjBlZDM4ZGI5ZjAzMTU5NDhlYTU2MGI0ZWUwNjkxYWUiXSA+IC50Yi1ncmlkLWNvbHVtbjpudGgtb2YtdHlwZSgzbiArIDEpIHsgZ3JpZC1jb2x1bW46IDEgfSAjdGJjc3MgLndwdi12aWV3LW91dHB1dFtkYXRhLXRvb2xzZXQtdmlld3Mtdmlldy1lZGl0b3I9ImYwZWQzOGRiOWYwMzE1OTQ4ZWE1NjBiNGVlMDY5MWFlIl0gPiAudGItZ3JpZC1jb2x1bW46bnRoLW9mLXR5cGUoM24gKyAyKSB7IGdyaWQtY29sdW1uOiAyIH0gI3RiY3NzIC53cHYtdmlldy1vdXRwdXRbZGF0YS10b29sc2V0LXZpZXdzLXZpZXctZWRpdG9yPSJmMGVkMzhkYjlmMDMxNTk0OGVhNTYwYjRlZTA2OTFhZSJdID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDNuICsgMykgeyBncmlkLWNvbHVtbjogMyB9ICN0YmNzcyAud3B2LXZpZXctb3V0cHV0W2RhdGEtdG9vbHNldC12aWV3cy12aWV3LWVkaXRvcj0iZjBlZDM4ZGI5ZjAzMTU5NDhlYTU2MGI0ZWUwNjkxYWUiXSAuanMtd3B2LWxvb3Atd3JhcHBlciA+IC50Yi1ncmlkIHsgZ3JpZC10ZW1wbGF0ZS1jb2x1bW5zOiBtaW5tYXgoMCwgMC4zMzMzZnIpIG1pbm1heCgwLCAwLjMzMzNmcikgbWlubWF4KDAsIDAuMzMzM2ZyKTtncmlkLWF1dG8tZmxvdzogcm93IH0gLnRiLWdyaWQsLnRiLWdyaWQ+LmJsb2NrLWVkaXRvci1pbm5lci1ibG9ja3M+LmJsb2NrLWVkaXRvci1ibG9jay1saXN0X19sYXlvdXR7ZGlzcGxheTpncmlkO2dyaWQtcm93LWdhcDoyNXB4O2dyaWQtY29sdW1uLWdhcDoyNXB4fS50Yi1ncmlkLWl0ZW17YmFja2dyb3VuZDojZDM4YTAzO3BhZGRpbmc6MzBweH0udGItZ3JpZC1jb2x1bW57ZmxleC13cmFwOndyYXB9LnRiLWdyaWQtY29sdW1uPip7d2lkdGg6MTAwJX0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi10b3B7d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpmbGV4LXN0YXJ0fS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLWNlbnRlcnt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmNlbnRlcn0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi1ib3R0b217d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpmbGV4LWVuZH0gI3RiY3NzIC53cC1ibG9jay10b29sc2V0LWJsb2Nrcy1ncmlkLnRiLWdyaWRbZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkPSJmM2I0NzNmZjZkZGJiYTFkMTE2OGViNmU3MzVkMjMxNCJdIHsgcGFkZGluZy1ib3R0b206IDMwcHg7Z3JpZC10ZW1wbGF0ZS1jb2x1bW5zOiBtaW5tYXgoMCwgMC41ZnIpIG1pbm1heCgwLCAwLjVmcik7Z3JpZC1hdXRvLWZsb3c6IHJvdyB9ICN0YmNzcyAud3AtYmxvY2stdG9vbHNldC1ibG9ja3MtZ3JpZC50Yi1ncmlkW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZD0iZjNiNDczZmY2ZGRiYmExZDExNjhlYjZlNzM1ZDIzMTQiXSA+IC50Yi1ncmlkLWNvbHVtbjpudGgtb2YtdHlwZSgybiArIDEpIHsgZ3JpZC1jb2x1bW46IDEgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9ImYzYjQ3M2ZmNmRkYmJhMWQxMTY4ZWI2ZTczNWQyMzE0Il0gPiAudGItZ3JpZC1jb2x1bW46bnRoLW9mLXR5cGUoMm4gKyAyKSB7IGdyaWQtY29sdW1uOiAyIH0gI3RiY3NzIC53cHYtY3VzdG9tLXNlYXJjaC1maWx0ZXItc3VibWl0W2RhdGEtdG9vbHNldC12aWV3cy1jdXN0b20tc2VhcmNoLXN1Ym1pdD0iYTNiOGQxYzRjNGU3N2RhZDM4OGRkMDVkYWRjYWI3NDEiXSB7IHRleHQtYWxpZ246IGxlZnQ7dGV4dC1hbGlnbjogY2VudGVyOyB9ICN0YmNzcyAud3B2LWN1c3RvbS1zZWFyY2gtZmlsdGVyLXN1Ym1pdFtkYXRhLXRvb2xzZXQtdmlld3MtY3VzdG9tLXNlYXJjaC1zdWJtaXQ9ImEzYjhkMWM0YzRlNzdkYWQzODhkZDA1ZGFkY2FiNzQxIl0gLndwdi1zdWJtaXQtdHJpZ2dlciB7IGJhY2tncm91bmQtY29sb3I6IHJnYmEoIDEsIDEwMiwgMTgwLCAxICk7cGFkZGluZzogMjBweCAzMHB4IDIwcHggMzBweDtib3JkZXI6IDBweCBzb2xpZCByZ2JhKCAwLCAwLCAwLCAxICk7Ym9yZGVyLXJhZGl1czogNHB4O3RleHQtYWxpZ246IGNlbnRlcjsgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uLnRiLWdyaWQtY29sdW1uW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW49IjMwMzRmYmU4ODZjMTEwNTRlOTViNDZiMDlkM2U0MTEyIl0geyBkaXNwbGF5OiBmbGV4OyB9ICN0YmNzcyAud3B2LWN1c3RvbS1zZWFyY2gtZmlsdGVyW2RhdGEtdG9vbHNldC12aWV3cy1jdXN0b20tc2VhcmNoLWZpbHRlcj0iZmE1MjM2ZTJmZGFhYTVjYWNhOGI4NWE1MGUyNjBkZjMiXSBsYWJlbCwgI3RiY3NzIC53cHYtY3VzdG9tLXNlYXJjaC1maWx0ZXJbZGF0YS10b29sc2V0LXZpZXdzLWN1c3RvbS1zZWFyY2gtZmlsdGVyPSJmYTUyMzZlMmZkYWFhNWNhY2E4Yjg1YTUwZTI2MGRmMyJdIC5lZGl0b3ItcmljaC10ZXh0X19lZGl0YWJsZSB7IGZvbnQtc2l6ZTogMTZweDtjb2xvcjogcmdiYSggMSwgMTAyLCAxODAsIDEgKTsgfSAjdGJjc3MgLndwdi1jdXN0b20tc2VhcmNoLWZpbHRlcltkYXRhLXRvb2xzZXQtdmlld3MtY3VzdG9tLXNlYXJjaC1maWx0ZXI9IjQxOGEyOGQ4MGQzY2FiMjg0YTZhYzYwNWQ0ZTNiYjBlIl0gbGFiZWwsICN0YmNzcyAud3B2LWN1c3RvbS1zZWFyY2gtZmlsdGVyW2RhdGEtdG9vbHNldC12aWV3cy1jdXN0b20tc2VhcmNoLWZpbHRlcj0iNDE4YTI4ZDgwZDNjYWIyODRhNmFjNjA1ZDRlM2JiMGUiXSAuZWRpdG9yLXJpY2gtdGV4dF9fZWRpdGFibGUgeyBmb250LXNpemU6IDE2cHg7Y29sb3I6IHJnYmEoIDEsIDEwMiwgMTgwLCAxICk7IH0gI3RiY3NzIC53cC1ibG9jay10b29sc2V0LWJsb2Nrcy1ncmlkLWNvbHVtbi50Yi1ncmlkLWNvbHVtbltkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uPSIxYmVjOGUyY2FhNGQ2ZGE4YTMwMjdmOTJjZTBmZDMwYSJdIHsgZGlzcGxheTogZmxleDsgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uLnRiLWdyaWQtY29sdW1uW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW49IjFiZWM4ZTJjYWE0ZDZkYThhMzAyN2Y5MmNlMGZkMzBhIl0gcCB7IGZvbnQtZmFtaWx5OiBBbGxhbjtmb250LXdlaWdodDogcmVndWxhcjsgfSAjdGJjc3MgLndwdi1jdXN0b20tc2VhcmNoLWZpbHRlcltkYXRhLXRvb2xzZXQtdmlld3MtY3VzdG9tLXNlYXJjaC1maWx0ZXI9ImY0MjE1ZTZhYjA2YmNiMDU2NTlhOTM5NWViM2Q2MmRhIl0gbGFiZWwsICN0YmNzcyAud3B2LWN1c3RvbS1zZWFyY2gtZmlsdGVyW2RhdGEtdG9vbHNldC12aWV3cy1jdXN0b20tc2VhcmNoLWZpbHRlcj0iZjQyMTVlNmFiMDZiY2IwNTY1OWE5Mzk1ZWIzZDYyZGEiXSAuZWRpdG9yLXJpY2gtdGV4dF9fZWRpdGFibGUgeyBmb250LXNpemU6IDE2cHg7Y29sb3I6IHJnYmEoIDEsIDEwMiwgMTgwLCAxICk7IH0gI3RiY3NzIGg0LnRiLWhlYWRpbmdbZGF0YS10b29sc2V0LWJsb2Nrcy1oZWFkaW5nPSIwODNkNmMxMWJkODM2NGYzMDIxNzdlNzcwYzYwZjAwZiJdICB7IGNvbG9yOiByZ2JhKCAxLCAxMDIsIDE4MCwgMSApO3RleHQtYWxpZ246IGxlZnQ7Ym9yZGVyLXJhZGl1czogMDtwYWRkaW5nOiA1cHggMTBweCA1cHggMTBweDttYXJnaW4tYm90dG9tOiAxNXB4O2JvcmRlci1sZWZ0OiA4cHggc29saWQgcmdiYSggMSwgMTAyLCAxODAsIDEgKTsgfSAgLnRiLWNvbnRhaW5lciAudGItY29udGFpbmVyLWlubmVye3dpZHRoOjEwMCU7bWFyZ2luOjAgYXV0b30gI3RiY3NzIC53cC1ibG9jay10b29sc2V0LWJsb2Nrcy1jb250YWluZXIudGItY29udGFpbmVyW2RhdGEtdG9vbHNldC1ibG9ja3MtY29udGFpbmVyPSIwNTc2OWIwZTg4ODc2ZTUwOWY1ZmMxNmNhMDUzNmM3ZiJdIHsgcGFkZGluZzogMjVweDsgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWNvbnRhaW5lci50Yi1jb250YWluZXJbZGF0YS10b29sc2V0LWJsb2Nrcy1jb250YWluZXI9IjA1NzY5YjBlODg4NzZlNTA5ZjVmYzE2Y2EwNTM2YzdmIl0gcCB7IGZvbnQtc2l6ZTogMTRweDtsaW5lLWhlaWdodDogMTZweDsgfSAjdGJjc3MgLnRiLWZpZWxkcy1hbmQtdGV4dFtkYXRhLXRvb2xzZXQtYmxvY2tzLWZpZWxkcy1hbmQtdGV4dD0iMGQ5M2Y4MWQ2NWVmYzgzYzA0NzViNDVhYThlNTI5YTgiXSB7IGZvbnQtc2l6ZTogMTZweDtmb250LXdlaWdodDogbm9ybWFsO2xpbmUtaGVpZ2h0OiAxZW07bGV0dGVyLXNwYWNpbmc6IDFweDtiYWNrZ3JvdW5kLWNvbG9yOiByZ2JhKCAyNDksIDI0NiwgMjQ2LCAxICk7cGFkZGluZzogMTBweDtib3JkZXI6IDBweCBzb2xpZCByZ2JhKCAwLCAwLCAwLCAxICk7IH0gI3RiY3NzIC50Yi1maWVsZHMtYW5kLXRleHRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZHMtYW5kLXRleHQ9IjBkOTNmODFkNjVlZmM4M2MwNDc1YjQ1YWE4ZTUyOWE4Il0gcCB7IGZvbnQtc2l6ZTogMTZweDtmb250LXdlaWdodDogbm9ybWFsO2xpbmUtaGVpZ2h0OiAxZW07bGV0dGVyLXNwYWNpbmc6IDFweDsgfSBAbWVkaWEgb25seSBzY3JlZW4gYW5kIChtYXgtd2lkdGg6IDc1MHB4KSB7IC50Yi1jb250YWluZXIgLnRiLWNvbnRhaW5lci1pbm5lcnt3aWR0aDoxMDAlO21hcmdpbjowIGF1dG99LnRiLWdyaWQsLnRiLWdyaWQ+LmJsb2NrLWVkaXRvci1pbm5lci1ibG9ja3M+LmJsb2NrLWVkaXRvci1ibG9jay1saXN0X19sYXlvdXR7ZGlzcGxheTpncmlkO2dyaWQtcm93LWdhcDoyNXB4O2dyaWQtY29sdW1uLWdhcDoyNXB4fS50Yi1ncmlkLWl0ZW17YmFja2dyb3VuZDojZDM4YTAzO3BhZGRpbmc6MzBweH0udGItZ3JpZC1jb2x1bW57ZmxleC13cmFwOndyYXB9LnRiLWdyaWQtY29sdW1uPip7d2lkdGg6MTAwJX0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi10b3B7d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpmbGV4LXN0YXJ0fS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLWNlbnRlcnt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmNlbnRlcn0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi1ib3R0b217d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpmbGV4LWVuZH0gI3RiY3NzIC53cHYtdmlldy1vdXRwdXRbZGF0YS10b29sc2V0LXZpZXdzLXZpZXctZWRpdG9yPSJmMGVkMzhkYjlmMDMxNTk0OGVhNTYwYjRlZTA2OTFhZSJdID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDNuICsgMSkgeyBncmlkLWNvbHVtbjogMSB9ICN0YmNzcyAud3B2LXZpZXctb3V0cHV0W2RhdGEtdG9vbHNldC12aWV3cy12aWV3LWVkaXRvcj0iZjBlZDM4ZGI5ZjAzMTU5NDhlYTU2MGI0ZWUwNjkxYWUiXSA+IC50Yi1ncmlkLWNvbHVtbjpudGgtb2YtdHlwZSgzbiArIDIpIHsgZ3JpZC1jb2x1bW46IDIgfSAjdGJjc3MgLndwdi12aWV3LW91dHB1dFtkYXRhLXRvb2xzZXQtdmlld3Mtdmlldy1lZGl0b3I9ImYwZWQzOGRiOWYwMzE1OTQ4ZWE1NjBiNGVlMDY5MWFlIl0gPiAudGItZ3JpZC1jb2x1bW46bnRoLW9mLXR5cGUoM24gKyAzKSB7IGdyaWQtY29sdW1uOiAzIH0gI3RiY3NzIC53cHYtdmlldy1vdXRwdXRbZGF0YS10b29sc2V0LXZpZXdzLXZpZXctZWRpdG9yPSJmMGVkMzhkYjlmMDMxNTk0OGVhNTYwYjRlZTA2OTFhZSJdIC5qcy13cHYtbG9vcC13cmFwcGVyID4gLnRiLWdyaWQgeyBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IG1pbm1heCgwLCAwLjMzMzNmcikgbWlubWF4KDAsIDAuMzMzM2ZyKSBtaW5tYXgoMCwgMC4zMzMzZnIpO2dyaWQtYXV0by1mbG93OiByb3cgfSAudGItZ3JpZCwudGItZ3JpZD4uYmxvY2stZWRpdG9yLWlubmVyLWJsb2Nrcz4uYmxvY2stZWRpdG9yLWJsb2NrLWxpc3RfX2xheW91dHtkaXNwbGF5OmdyaWQ7Z3JpZC1yb3ctZ2FwOjI1cHg7Z3JpZC1jb2x1bW4tZ2FwOjI1cHh9LnRiLWdyaWQtaXRlbXtiYWNrZ3JvdW5kOiNkMzhhMDM7cGFkZGluZzozMHB4fS50Yi1ncmlkLWNvbHVtbntmbGV4LXdyYXA6d3JhcH0udGItZ3JpZC1jb2x1bW4+Knt3aWR0aDoxMDAlfS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLXRvcHt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmZsZXgtc3RhcnR9LnRiLWdyaWQtY29sdW1uLnRiLWdyaWQtYWxpZ24tY2VudGVye3dpZHRoOjEwMCU7ZGlzcGxheTpmbGV4O2FsaWduLWNvbnRlbnQ6Y2VudGVyfS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLWJvdHRvbXt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmZsZXgtZW5kfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9ImYzYjQ3M2ZmNmRkYmJhMWQxMTY4ZWI2ZTczNWQyMzE0Il0geyBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IG1pbm1heCgwLCAwLjVmcikgbWlubWF4KDAsIDAuNWZyKTtncmlkLWF1dG8tZmxvdzogcm93IH0gI3RiY3NzIC53cC1ibG9jay10b29sc2V0LWJsb2Nrcy1ncmlkLnRiLWdyaWRbZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkPSJmM2I0NzNmZjZkZGJiYTFkMTE2OGViNmU3MzVkMjMxNCJdID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDJuICsgMSkgeyBncmlkLWNvbHVtbjogMSB9ICN0YmNzcyAud3AtYmxvY2stdG9vbHNldC1ibG9ja3MtZ3JpZC50Yi1ncmlkW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZD0iZjNiNDczZmY2ZGRiYmExZDExNjhlYjZlNzM1ZDIzMTQiXSA+IC50Yi1ncmlkLWNvbHVtbjpudGgtb2YtdHlwZSgybiArIDIpIHsgZ3JpZC1jb2x1bW46IDIgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uLnRiLWdyaWQtY29sdW1uW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW49IjMwMzRmYmU4ODZjMTEwNTRlOTViNDZiMDlkM2U0MTEyIl0geyBkaXNwbGF5OiBmbGV4OyB9ICN0YmNzcyAud3AtYmxvY2stdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW4udGItZ3JpZC1jb2x1bW5bZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkLWNvbHVtbj0iMWJlYzhlMmNhYTRkNmRhOGEzMDI3ZjkyY2UwZmQzMGEiXSB7IGRpc3BsYXk6IGZsZXg7IH0gIC50Yi1jb250YWluZXIgLnRiLWNvbnRhaW5lci1pbm5lcnt3aWR0aDoxMDAlO21hcmdpbjowIGF1dG99I3RiY3NzIC50Yi1maWVsZHMtYW5kLXRleHRbZGF0YS10b29sc2V0LWJsb2Nrcy1maWVsZHMtYW5kLXRleHQ9IjBkOTNmODFkNjVlZmM4M2MwNDc1YjQ1YWE4ZTUyOWE4Il0geyBiYWNrZ3JvdW5kLWNvbG9yOiByZ2JhKCAyNDcsIDI0NywgMjQ3LCAxICk7Ym9yZGVyOiAxNXB4IHNvbGlkIHJnYmEoIDI0NiwgMjQ2LCAyNDYsIDEgKTsgfSAgfSBAbWVkaWEgb25seSBzY3JlZW4gYW5kIChtYXgtd2lkdGg6IDU5OXB4KSB7IC50Yi1jb250YWluZXIgLnRiLWNvbnRhaW5lci1pbm5lcnt3aWR0aDoxMDAlO21hcmdpbjowIGF1dG99LnRiLWdyaWQsLnRiLWdyaWQ+LmJsb2NrLWVkaXRvci1pbm5lci1ibG9ja3M+LmJsb2NrLWVkaXRvci1ibG9jay1saXN0X19sYXlvdXR7ZGlzcGxheTpncmlkO2dyaWQtcm93LWdhcDoyNXB4O2dyaWQtY29sdW1uLWdhcDoyNXB4fS50Yi1ncmlkLWl0ZW17YmFja2dyb3VuZDojZDM4YTAzO3BhZGRpbmc6MzBweH0udGItZ3JpZC1jb2x1bW57ZmxleC13cmFwOndyYXB9LnRiLWdyaWQtY29sdW1uPip7d2lkdGg6MTAwJX0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi10b3B7d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpmbGV4LXN0YXJ0fS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLWNlbnRlcnt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmNlbnRlcn0udGItZ3JpZC1jb2x1bW4udGItZ3JpZC1hbGlnbi1ib3R0b217d2lkdGg6MTAwJTtkaXNwbGF5OmZsZXg7YWxpZ24tY29udGVudDpmbGV4LWVuZH0gI3RiY3NzIC53cHYtdmlldy1vdXRwdXRbZGF0YS10b29sc2V0LXZpZXdzLXZpZXctZWRpdG9yPSJmMGVkMzhkYjlmMDMxNTk0OGVhNTYwYjRlZTA2OTFhZSJdICA+IC50Yi1ncmlkLWNvbHVtbjpudGgtb2YtdHlwZSgxbisxKSB7IGdyaWQtY29sdW1uOiAxIH0gI3RiY3NzIC53cHYtdmlldy1vdXRwdXRbZGF0YS10b29sc2V0LXZpZXdzLXZpZXctZWRpdG9yPSJmMGVkMzhkYjlmMDMxNTk0OGVhNTYwYjRlZTA2OTFhZSJdIC5qcy13cHYtbG9vcC13cmFwcGVyID4gLnRiLWdyaWQgeyBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IG1pbm1heCgwLCAxZnIpO2dyaWQtYXV0by1mbG93OiByb3cgfSAudGItZ3JpZCwudGItZ3JpZD4uYmxvY2stZWRpdG9yLWlubmVyLWJsb2Nrcz4uYmxvY2stZWRpdG9yLWJsb2NrLWxpc3RfX2xheW91dHtkaXNwbGF5OmdyaWQ7Z3JpZC1yb3ctZ2FwOjI1cHg7Z3JpZC1jb2x1bW4tZ2FwOjI1cHh9LnRiLWdyaWQtaXRlbXtiYWNrZ3JvdW5kOiNkMzhhMDM7cGFkZGluZzozMHB4fS50Yi1ncmlkLWNvbHVtbntmbGV4LXdyYXA6d3JhcH0udGItZ3JpZC1jb2x1bW4+Knt3aWR0aDoxMDAlfS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLXRvcHt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmZsZXgtc3RhcnR9LnRiLWdyaWQtY29sdW1uLnRiLWdyaWQtYWxpZ24tY2VudGVye3dpZHRoOjEwMCU7ZGlzcGxheTpmbGV4O2FsaWduLWNvbnRlbnQ6Y2VudGVyfS50Yi1ncmlkLWNvbHVtbi50Yi1ncmlkLWFsaWduLWJvdHRvbXt3aWR0aDoxMDAlO2Rpc3BsYXk6ZmxleDthbGlnbi1jb250ZW50OmZsZXgtZW5kfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9ImYzYjQ3M2ZmNmRkYmJhMWQxMTY4ZWI2ZTczNWQyMzE0Il0geyBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IG1pbm1heCgwLCAxZnIpO2dyaWQtYXV0by1mbG93OiByb3cgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQudGItZ3JpZFtkYXRhLXRvb2xzZXQtYmxvY2tzLWdyaWQ9ImYzYjQ3M2ZmNmRkYmJhMWQxMTY4ZWI2ZTczNWQyMzE0Il0gID4gLnRiLWdyaWQtY29sdW1uOm50aC1vZi10eXBlKDFuKzEpIHsgZ3JpZC1jb2x1bW46IDEgfSAjdGJjc3MgLndwLWJsb2NrLXRvb2xzZXQtYmxvY2tzLWdyaWQtY29sdW1uLnRiLWdyaWQtY29sdW1uW2RhdGEtdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW49IjMwMzRmYmU4ODZjMTEwNTRlOTViNDZiMDlkM2U0MTEyIl0geyBkaXNwbGF5OiBmbGV4OyB9ICN0YmNzcyAud3AtYmxvY2stdG9vbHNldC1ibG9ja3MtZ3JpZC1jb2x1bW4udGItZ3JpZC1jb2x1bW5bZGF0YS10b29sc2V0LWJsb2Nrcy1ncmlkLWNvbHVtbj0iMWJlYzhlMmNhYTRkNmRhOGEzMDI3ZjkyY2UwZmQzMGEiXSB7IGRpc3BsYXk6IGZsZXg7IH0gIC50Yi1jb250YWluZXIgLnRiLWNvbnRhaW5lci1pbm5lcnt3aWR0aDoxMDAlO21hcmdpbjowIGF1dG99IH0g
論文概要
QWxsYW46cmVndWxhcg==
動物園や水族館では、アニマルウェルフェアの状況を詳細かつ客観的に規則正しく評価することが不可欠の急務となっている。しかし、ウェルフェアを評価する従来の方法では、動物園や水族館で飼育される動物種や個体数の規模に合わせて拡大するのが困難である。人工知能(AI)を活用した自動化は、こうした課題への解決策となり得る。
この総説では、当該領域における最近の進展を概観し、特に動物園と水族館におけるアニマルウェルフェアに関する研究に焦点を当てる。動物の行動とウェルフェアのモニタリングにおける AIの活用は、特に畜産動物に関しては、近年ますます一般的なものとなりつつある。
最近の研究では、AIを活用して鶏や豚、羊、牛などの動物行動を識別・評価する可能性について検証されており、具体的には牛の発情期の予測、動物の鳴き声の分類、(牛や羊における歩行障害の初期症状など)アニマルウェルフェアに関わる問題の検出などが挙げられる。コンパニオンアニマルでは、顔認識や鳴き声による感情認識、行動のモニタリングなどでAIが利用されている。実験動物についても、2000年以降は行動モニタリングにAIツールを活用する事例が急速に増加している。
AIは動物園でもますます広く利用されており、例えば動物の個体を識別することや、エンクロージャー内での移動の様子のモニタリング、環境エンリッチメントが使われた時間を計測して行動を定量化することなどが挙げられる。
アニマルウェルフェアにおける AI利用の急拡大は、動物の管理やウェルフェアを増進するうえで大きな可能性があることを示しており、このためには動物園や水族館でのモニタリングや予測の精度をより効率的に改善することが重要となる。